Subversion Repositories group.electronics

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
33 pfowler 1
/* Name: usbdrvasm18.inc
2
 * Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
3
 * Author: Lukas Schrittwieser (based on 20 MHz usbdrvasm20.inc by Jeroen Benschop)
4
 * Creation Date: 2009-01-20
5
 * Tabsize: 4
6
 * Copyright: (c) 2008 by Lukas Schrittwieser and OBJECTIVE DEVELOPMENT Software GmbH
7
 * License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
8
 * Revision: $Id$
9
 */
10
 
11
/* Do not link this file! Link usbdrvasm.S instead, which includes the
12
 * appropriate implementation!
13
 */
14
 
15
/*
16
General Description:
17
This file is the 18 MHz version of the asssembler part of the USB driver. It
18
requires a 18 MHz crystal (not a ceramic resonator and not a calibrated RC
19
oscillator).
20
 
21
See usbdrv.h for a description of the entire driver.
22
 
23
Since almost all of this code is timing critical, don't change unless you
24
really know what you are doing! Many parts require not only a maximum number
25
of CPU cycles, but even an exact number of cycles!
26
*/
27
 
28
 
29
;max stack usage: [ret(2), YL, SREG, YH, [sofError], bitcnt(x5), shift, x1, x2, x3, x4, cnt, ZL, ZH] = 14 bytes
30
;nominal frequency: 18 MHz -> 12 cycles per bit
31
; Numbers in brackets are clocks counted from center of last sync bit
32
; when instruction starts
33
;register use in receive loop to receive the data bytes:
34
; shift assembles the byte currently being received
35
; x1 holds the D+ and D- line state
36
; x2 holds the previous line state
37
; cnt holds the number of bytes left in the receive buffer
38
; x3 holds the higher crc byte (see algorithm below)
39
; x4 is used as temporary register for the crc algorithm
40
; x5 is used for unstuffing: when unstuffing the last received bit is inverted in shift (to prevent further
41
;    unstuffing calls. In the same time the corresponding bit in x5 is cleared to mark the bit as beening iverted
42
; zl lower crc value and crc table index
43
; zh used for crc table accesses
44
 
45
;--------------------------------------------------------------------------------------------------------------
46
; CRC mods:
47
;  table driven crc checker, Z points to table in prog space
48
;   ZL is the lower crc byte, x3 is the higher crc byte
49
;	x4 is used as temp register to store different results
50
;	the initialization of the crc register is not 0xFFFF but 0xFE54. This is because during the receipt of the
51
;	first data byte an virtual zero data byte is added to the crc register, this results in the correct initial
52
;	value of 0xFFFF at beginning of the second data byte before the first data byte is added to the crc.
53
;	The magic number 0xFE54 results form the crc table: At tabH[0x54] = 0xFF = crcH (required) and
54
;	tabL[0x54] = 0x01  ->  crcL = 0x01 xor 0xFE = 0xFF
55
;  bitcnt is renamed to x5 and is used for unstuffing purposes, the unstuffing works like in the 12MHz version
56
;--------------------------------------------------------------------------------------------------------------
57
; CRC algorithm:
58
;	The crc register is formed by x3 (higher byte) and ZL (lower byte). The algorithm uses a 'reversed' form
59
;	i.e. that it takes the least significant bit first and shifts to the right. So in fact the highest order
60
;	bit seen from the polynomial devision point of view is the lsb of ZL. (If this sounds strange to you i
61
;	propose a research on CRC :-) )
62
;	Each data byte received is xored to ZL, the lower crc byte. This byte now builds the crc
63
;	table index. Next the new high byte is loaded from the table and stored in x4 until we have space in x3
64
;	(its destination).
65
;	Afterwards the lower table is loaded from the table and stored in ZL (the old index is overwritten as
66
;	we don't need it anymore. In fact this is a right shift by 8 bits.) Now the old crc high value is xored
67
;	to ZL, this is the second shift of the old crc value. Now x4 (the temp reg) is moved to x3 and the crc
68
; 	calculation is done.
69
;	Prior to the first byte the two CRC register have to be initialized to 0xFFFF (as defined in usb spec)
70
;	however the crc engine also runs during the receipt of the first byte, therefore x3 and zl are initialized
71
;	to a magic number which results in a crc value of 0xFFFF after the first complete byte.
72
;
73
;	This algorithm is split into the extra cycles of the different bits:
74
;	bit7:	XOR the received byte to ZL
75
;	bit5:	load the new high byte to x4
76
;	bit6:	load the lower xor byte from the table, xor zl and x3, store result in zl (=the new crc low value)
77
;			move x4 (the new high byte) to x3, the crc value is ready
78
;
79
 
80
 
81
macro POP_STANDARD ; 18 cycles
82
    pop		ZH
83
    pop		ZL
84
	pop     cnt
85
    pop     x5
86
    pop     x3
87
    pop     x2
88
    pop     x1
89
    pop     shift
90
    pop     x4
91
    endm
92
macro POP_RETI     ; 7 cycles
93
    pop     YH
94
    pop     YL
95
    out     SREG, YL
96
    pop     YL
97
    endm
98
 
99
macro CRC_CLEANUP_AND_CHECK
100
	; the last byte has already been xored with the lower crc byte, we have to do the table lookup and xor
101
	; x3 is the higher crc byte, zl the lower one
102
	ldi		ZH, hi8(usbCrcTableHigh);[+1] get the new high byte from the table
103
	lpm		x2, Z				;[+2][+3][+4]
104
	ldi		ZH, hi8(usbCrcTableLow);[+5] get the new low xor byte from the table
105
	lpm		ZL, Z				;[+6][+7][+8]
106
	eor		ZL, x3				;[+7] xor the old high byte with the value from the table, x2:ZL now holds the crc value
107
	cpi		ZL, 0x01			;[+8] if the crc is ok we have a fixed remainder value of 0xb001 in x2:ZL (see usb spec)
108
	brne	ignorePacket		;[+9] detected a crc fault -> paket is ignored and retransmitted by the host
109
	cpi		x2, 0xb0			;[+10]
110
	brne	ignorePacket		;[+11] detected a crc fault -> paket is ignored and retransmitted by the host
111
    endm
112
 
113
 
114
USB_INTR_VECTOR:
115
;order of registers pushed: YL, SREG, YH, [sofError], x4, shift, x1, x2, x3, x5, cnt, ZL, ZH
116
    push    YL                  ;[-28] push only what is necessary to sync with edge ASAP
117
    in      YL, SREG            ;[-26]
118
    push    YL                  ;[-25]
119
    push    YH                  ;[-23]
120
;----------------------------------------------------------------------------
121
; Synchronize with sync pattern:
122
;----------------------------------------------------------------------------
123
;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
124
;sync up with J to K edge during sync pattern -- use fastest possible loops
125
;The first part waits at most 1 bit long since we must be in sync pattern.
126
;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to
127
;waitForJ, ensure that this prerequisite is met.
128
waitForJ:
129
    inc     YL
130
    sbis    USBIN, USBMINUS
131
    brne    waitForJ        ; just make sure we have ANY timeout
132
waitForK:
133
;The following code results in a sampling window of < 1/4 bit which meets the spec.
134
    sbis    USBIN, USBMINUS     ;[-17]
135
    rjmp    foundK              ;[-16]
136
    sbis    USBIN, USBMINUS
137
    rjmp    foundK
138
    sbis    USBIN, USBMINUS
139
    rjmp    foundK
140
    sbis    USBIN, USBMINUS
141
    rjmp    foundK
142
    sbis    USBIN, USBMINUS
143
    rjmp    foundK
144
    sbis    USBIN, USBMINUS
145
    rjmp    foundK
146
    sbis    USBIN, USBMINUS
147
    rjmp    foundK
148
    sbis    USBIN, USBMINUS
149
    rjmp    foundK
150
    sbis    USBIN, USBMINUS
151
    rjmp    foundK
152
#if USB_COUNT_SOF
153
    lds     YL, usbSofCount
154
    inc     YL
155
    sts     usbSofCount, YL
156
#endif  /* USB_COUNT_SOF */
157
#ifdef USB_SOF_HOOK
158
    USB_SOF_HOOK
159
#endif
160
    rjmp    sofError
161
foundK:                         ;[-15]
162
;{3, 5} after falling D- edge, average delay: 4 cycles
163
;bit0 should be at 30  (2.5 bits) for center sampling. Currently at 4 so 26 cylces till bit 0 sample
164
;use 1 bit time for setup purposes, then sample again. Numbers in brackets
165
;are cycles from center of first sync (double K) bit after the instruction
166
    push    x4                  ;[-14]
167
;   [---]                       ;[-13]
168
    lds     YL, usbInputBufOffset;[-12] used to toggle the two usb receive buffers
169
;   [---]                       ;[-11]
170
    clr     YH                  ;[-10]
171
    subi    YL, lo8(-(usbRxBuf));[-9] [rx loop init]
172
    sbci    YH, hi8(-(usbRxBuf));[-8] [rx loop init]
173
    push    shift               ;[-7]
174
;   [---]                       ;[-6]
175
    ldi		shift, 0x80			;[-5] the last bit is the end of byte marker for the pid receiver loop
176
    clc			      	      	;[-4] the carry has to be clear for receipt of pid bit 0
177
    sbis    USBIN, USBMINUS     ;[-3] we want two bits K (sample 3 cycles too early)
178
    rjmp    haveTwoBitsK        ;[-2]
179
    pop     shift               ;[-1] undo the push from before
180
    pop     x4                  ;[1]
181
    rjmp    waitForK            ;[3] this was not the end of sync, retry
182
; The entire loop from waitForK until rjmp waitForK above must not exceed two
183
; bit times (= 24 cycles).
184
 
185
;----------------------------------------------------------------------------
186
; push more registers and initialize values while we sample the first bits:
187
;----------------------------------------------------------------------------
188
haveTwoBitsK:
189
    push    x1                  ;[0]
190
    push    x2                  ;[2]
191
    push    x3                  ;[4] crc high byte
192
    ldi     x2, 1<<USBPLUS      ;[6] [rx loop init] current line state is K state. D+=="1", D-=="0"
193
    push    x5                  ;[7]
194
    push    cnt                 ;[9]
195
    ldi     cnt, USB_BUFSIZE    ;[11]
196
 
197
 
198
;--------------------------------------------------------------------------------------------------------------
199
; receives the pid byte
200
; there is no real unstuffing algorithm implemented here as a stuffing bit is impossible in the pid byte.
201
; That's because the last four bits of the byte are the inverted of the first four bits. If we detect a
202
; unstuffing condition something went wrong and abort
203
; shift has to be initialized to 0x80
204
;--------------------------------------------------------------------------------------------------------------
205
 
206
; pid bit 0 - used for even more register saving (we need the z pointer)
207
	in      x1, USBIN           ;[0] sample line state
208
    andi    x1, USBMASK         ;[1] filter only D+ and D- bits
209
    eor		x2, x1				;[2] generate inverted of actual bit
210
	sbrc	x2, USBMINUS		;[3] if the bit is set we received a zero
211
	sec							;[4]
212
	ror		shift				;[5] we perform no unstuffing check here as this is the first bit
213
	mov		x2, x1				;[6]
214
	push	ZL					;[7]
215
								;[8]
216
	push	ZH					;[9]
217
								;[10]
218
	ldi		x3, 0xFE			;[11] x3 is the high order crc value
219
 
220
 
221
bitloopPid:						
222
	in      x1, USBIN           ;[0] sample line state
223
   	andi    x1, USBMASK         ;[1] filter only D+ and D- bits
224
    breq    nse0                ;[2] both lines are low so handle se0	
225
	eor		x2, x1				;[3] generate inverted of actual bit
226
	sbrc	x2, USBMINUS		;[4] set the carry if we received a zero
227
	sec							;[5]
228
	ror		shift				;[6]
229
	ldi		ZL, 0x54			;[7] ZL is the low order crc value
230
	ser		x4					;[8] the is no bit stuffing check here as the pid bit can't be stuffed. if so
231
								; some error occured. In this case the paket is discarded later on anyway.
232
	mov		x2, x1				;[9] prepare for the next cycle
233
	brcc	bitloopPid			;[10] while 0s drop out of shift we get the next bit
234
	eor		x4, shift			;[11] invert all bits in shift and store result in x4
235
 
236
;--------------------------------------------------------------------------------------------------------------
237
; receives data bytes and calculates the crc
238
; the last USBIN state has to be in x2
239
; this is only the first half, due to branch distanc limitations the second half of the loop is near the end
240
; of this asm file
241
;--------------------------------------------------------------------------------------------------------------
242
 
243
rxDataStart:
244
    in      x1, USBIN           ;[0] sample line state (note: a se0 check is not useful due to bit dribbling)
245
    ser		x5					;[1] prepare the unstuff marker register
246
    eor		x2, x1             	;[2] generates the inverted of the actual bit
247
    bst		x2, USBMINUS       	;[3] copy the bit from x2
248
    bld		shift, 0	        ;[4] and store it in shift
249
    mov		x2, shift	     	;[5] make a copy of shift for unstuffing check
250
    andi	x2, 0xF9	      	;[6] mask the last six bits, if we got six zeros (which are six ones in fact)
251
    breq	unstuff0	      	;[7] then Z is set now and we branch to the unstuffing handler
252
didunstuff0:
253
	subi    cnt, 1         		;[8] cannot use dec because it doesn't affect the carry flag
254
    brcs    nOverflow    		;[9] Too many bytes received. Ignore packet							
255
    st		Y+, x4				;[10] store the last received byte
256
								;[11] st needs two cycles
257
 
258
; bit1							
259
	in		x2, USBIN			;[0] sample line state
260
    andi	x1, USBMASK			;[1] check for se0 during bit 0
261
    breq	nse0				;[2]
262
    andi	x2, USBMASK			;[3] check se0 during bit 1
263
    breq	nse0				;[4]
264
	eor		x1, x2				;[5]
265
    bst		x1, USBMINUS		;[6]
266
    bld 	shift, 1	 		;[7]
267
    mov		x1, shift			;[8]
268
    andi	x1, 0xF3			;[9]
269
    breq	unstuff1			;[10]
270
didunstuff1:
271
	nop							;[11]	
272
 
273
; bit2
274
	in      x1, USBIN           ;[0] sample line state
275
    andi	x1, USBMASK			;[1] check for se0 (as there is nothing else to do here
276
	breq	nOverflow	 		;[2]
277
    eor		x2, x1              ;[3] generates the inverted of the actual bit
278
    bst		x2, USBMINUS		;[4]
279
    bld		shift, 2			;[5] store the bit
280
    mov		x2, shift			;[6]
281
    andi	x2, 0xE7			;[7] if we have six zeros here (which means six 1 in the stream)
282
    breq	unstuff2			;[8] the next bit is a stuffing bit
283
didunstuff2:
284
	nop2						;[9]
285
								;[10]
286
	nop							;[11]					
287
 
288
; bit3							
289
	in		x2, USBIN			;[0] sample line state
290
    andi	x2, USBMASK			;[1] check for se0
291
    breq	nOverflow           ;[2]
292
    eor		x1, x2				;[3]
293
    bst		x1, USBMINUS		;[4]
294
    bld 	shift, 3	 		;[5]
295
    mov		x1, shift			;[6]
296
    andi	x1, 0xCF			;[7]
297
    breq	unstuff3			;[8]
298
didunstuff3:
299
	nop							;[9]
300
	rjmp 	rxDataBit4			;[10]
301
								;[11]				
302
 
303
; the avr branch instructions allow an offset of +63 insturction only, so we need this
304
; 'local copy' of se0
305
nse0:		
306
	rjmp	se0					;[4]
307
								;[5]
308
; the same same as for se0 is needed for overflow and StuffErr
309
nOverflow:
310
stuffErr:
311
	rjmp	overflow
312
 
313
 
314
unstuff0:						;[8] this is the branch delay of breq unstuffX
315
	andi	x1, USBMASK			;[9] do an se0 check here (if the last crc byte ends with 5 one's we might end up here
316
	breq	didunstuff0			;[10] event tough the message is complete -> jump back and store the byte
317
	ori		shift, 0x01			;[11] invert the last received bit to prevent furhter unstuffing
318
	in		x2, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
319
	andi	x5, 0xFE			;[1] mark this bit as inverted (will be corrected before storing shift)
320
	eor		x1, x2				;[2] x1 and x2 have to be different because the stuff bit is always a zero
321
	andi	x1, USBMASK			;[3] mask the interesting bits
322
	breq	stuffErr			;[4] if the stuff bit is a 1-bit something went wrong
323
	mov 	x1, x2				;[5] the next bit expects the last state to be in x1
324
	rjmp 	didunstuff0			;[6]
325
								;[7] jump delay of rjmp didunstuffX	
326
 
327
unstuff1:						;[11] this is the jump delay of breq unstuffX
328
	in		x1, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
329
	ori		shift, 0x02			;[1] invert the last received bit to prevent furhter unstuffing
330
	andi	x5, 0xFD			;[2] mark this bit as inverted (will be corrected before storing shift)
331
	eor		x2, x1				;[3] x1 and x2 have to be different because the stuff bit is always a zero
332
	andi	x2, USBMASK			;[4] mask the interesting bits
333
	breq	stuffErr			;[5] if the stuff bit is a 1-bit something went wrong
334
	mov 	x2, x1				;[6] the next bit expects the last state to be in x2
335
	nop2						;[7]
336
								;[8]
337
	rjmp 	didunstuff1			;[9]
338
								;[10] jump delay of rjmp didunstuffX		
339
 
340
unstuff2:						;[9] this is the jump delay of breq unstuffX
341
	ori		shift, 0x04			;[10] invert the last received bit to prevent furhter unstuffing
342
	andi	x5, 0xFB			;[11] mark this bit as inverted (will be corrected before storing shift)
343
	in		x2, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
344
	eor		x1, x2				;[1] x1 and x2 have to be different because the stuff bit is always a zero
345
	andi	x1, USBMASK			;[2] mask the interesting bits
346
	breq	stuffErr			;[3] if the stuff bit is a 1-bit something went wrong
347
	mov 	x1, x2				;[4] the next bit expects the last state to be in x1
348
	nop2						;[5]
349
								;[6]
350
	rjmp 	didunstuff2			;[7]
351
								;[8] jump delay of rjmp didunstuffX	
352
 
353
unstuff3:						;[9] this is the jump delay of breq unstuffX
354
	ori		shift, 0x08			;[10] invert the last received bit to prevent furhter unstuffing
355
	andi	x5, 0xF7			;[11] mark this bit as inverted (will be corrected before storing shift)
356
	in		x1, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
357
	eor		x2, x1				;[1] x1 and x2 have to be different because the stuff bit is always a zero
358
	andi	x2, USBMASK			;[2] mask the interesting bits
359
	breq	stuffErr			;[3] if the stuff bit is a 1-bit something went wrong
360
	mov 	x2, x1				;[4] the next bit expects the last state to be in x2
361
	nop2						;[5]
362
								;[6]
363
	rjmp 	didunstuff3			;[7]
364
								;[8] jump delay of rjmp didunstuffX			
365
 
366
 
367
 
368
; the include has to be here due to branch distance restirctions
369
#define __USE_CRC__
370
#include "asmcommon.inc"
371
 
372
 
373
 
374
; USB spec says:
375
; idle = J
376
; J = (D+ = 0), (D- = 1)
377
; K = (D+ = 1), (D- = 0)
378
; Spec allows 7.5 bit times from EOP to SOP for replies
379
; 7.5 bit times is 90 cycles. ...there is plenty of time
380
 
381
 
382
sendNakAndReti:
383
    ldi     x3, USBPID_NAK  ;[-18]
384
    rjmp    sendX3AndReti   ;[-17]
385
sendAckAndReti:
386
    ldi     cnt, USBPID_ACK ;[-17]
387
sendCntAndReti:
388
    mov     x3, cnt         ;[-16]
389
sendX3AndReti:
390
    ldi     YL, 20          ;[-15] x3==r20 address is 20
391
    ldi     YH, 0           ;[-14]
392
    ldi     cnt, 2          ;[-13]
393
;   rjmp    usbSendAndReti      fallthrough
394
 
395
;usbSend:
396
;pointer to data in 'Y'
397
;number of bytes in 'cnt' -- including sync byte [range 2 ... 12]
398
;uses: x1...x4, btcnt, shift, cnt, Y
399
;Numbers in brackets are time since first bit of sync pattern is sent
400
 
401
usbSendAndReti:             ; 12 cycles until SOP
402
    in      x2, USBDDR      ;[-12]
403
    ori     x2, USBMASK     ;[-11]
404
    sbi     USBOUT, USBMINUS;[-10] prepare idle state; D+ and D- must have been 0 (no pullups)
405
    in      x1, USBOUT      ;[-8] port mirror for tx loop
406
    out     USBDDR, x2      ;[-6] <- acquire bus
407
	ldi		x2, 0			;[-6] init x2 (bitstuff history) because sync starts with 0
408
    ldi     x4, USBMASK     ;[-5] exor mask
409
    ldi     shift, 0x80     ;[-4] sync byte is first byte sent
410
txByteLoop:
411
    ldi     bitcnt, 0x40    ;[-3]=[9]     binary 01000000
412
txBitLoop:					; the loop sends the first 7 bits of the byte
413
    sbrs    shift, 0        ;[-2]=[10] if we have to send a 1 don't change the line state
414
    eor     x1, x4          ;[-1]=[11]
415
    out     USBOUT, x1      ;[0]
416
    ror     shift           ;[1]
417
    ror     x2              ;[2] transfers the last sent bit to the stuffing history
418
didStuffN:
419
    nop	                    ;[3]
420
    nop                     ;[4]
421
    cpi     x2, 0xfc        ;[5] if we sent six consecutive ones
422
    brcc    bitstuffN       ;[6]
423
    lsr     bitcnt          ;[7]
424
    brne    txBitLoop       ;[8] restart the loop while the 1 is still in the bitcount
425
 
426
; transmit bit 7
427
    sbrs    shift, 0        ;[9]
428
    eor     x1, x4          ;[10]
429
didStuff7:
430
    ror     shift           ;[11]
431
	out     USBOUT, x1      ;[0] transfer bit 7 to the pins
432
    ror     x2              ;[1] move the bit into the stuffing history	
433
    cpi     x2, 0xfc        ;[2]
434
    brcc    bitstuff7       ;[3]
435
    ld      shift, y+       ;[4] get next byte to transmit
436
    dec     cnt             ;[5] decrement byte counter
437
    brne    txByteLoop      ;[7] if we have more bytes start next one
438
    						;[8] branch delay
439
 
440
;make SE0:
441
    cbr     x1, USBMASK     ;[8] 		prepare SE0 [spec says EOP may be 25 to 30 cycles]
442
    lds     x2, usbNewDeviceAddr;[9]
443
    lsl     x2              ;[11] 		we compare with left shifted address
444
    out     USBOUT, x1      ;[0] 		<-- out SE0 -- from now 2 bits = 24 cycles until bus idle
445
    subi    YL, 20 + 2      ;[1] 		Only assign address on data packets, not ACK/NAK in x3
446
    sbci    YH, 0           ;[2]
447
;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
448
;set address only after data packet was sent, not after handshake
449
    breq    skipAddrAssign  ;[3]
450
    sts     usbDeviceAddr, x2		; if not skipped: SE0 is one cycle longer
451
skipAddrAssign:
452
;end of usbDeviceAddress transfer
453
    ldi     x2, 1<<USB_INTR_PENDING_BIT;[5] int0 occurred during TX -- clear pending flag
454
    USB_STORE_PENDING(x2)   ;[6]
455
    ori     x1, USBIDLE     ;[7]
456
    in      x2, USBDDR      ;[8]
457
    cbr     x2, USBMASK     ;[9] set both pins to input
458
    mov     x3, x1          ;[10]
459
    cbr     x3, USBMASK     ;[11] configure no pullup on both pins
460
    ldi     x4, 4           ;[12]
461
se0Delay:
462
    dec     x4              ;[13] [16] [19] [22]
463
    brne    se0Delay        ;[14] [17] [20] [23]
464
    out     USBOUT, x1      ;[24] <-- out J (idle) -- end of SE0 (EOP signal)
465
    out     USBDDR, x2      ;[25] <-- release bus now
466
    out     USBOUT, x3      ;[26] <-- ensure no pull-up resistors are active
467
    rjmp    doReturn
468
 
469
bitstuffN:
470
    eor     x1, x4          ;[8] generate a zero
471
    ldi     x2, 0           ;[9] reset the bit stuffing history
472
    nop2                    ;[10]
473
    out     USBOUT, x1      ;[0] <-- send the stuffing bit
474
    rjmp    didStuffN       ;[1]
475
 
476
bitstuff7:
477
    eor     x1, x4          ;[5]
478
    ldi     x2, 0           ;[6] reset bit stuffing history
479
    clc						;[7] fill a zero into the shift register
480
    rol     shift           ;[8] compensate for ror shift at branch destination
481
    rjmp    didStuff7       ;[9]
482
    						;[10] jump delay
483
 
484
;--------------------------------------------------------------------------------------------------------------
485
; receives data bytes and calculates the crc
486
; second half of the data byte receiver loop
487
; most parts of the crc algorithm are here
488
;--------------------------------------------------------------------------------------------------------------
489
 
490
nOverflow2:
491
	rjmp overflow
492
 
493
rxDataBit4:
494
	in      x1, USBIN           ;[0] sample line state
495
    andi	x1, USBMASK			;[1] check for se0
496
    breq	nOverflow2			;[2]
497
    eor		x2, x1              ;[3]
498
    bst		x2, USBMINUS		;[4]
499
    bld		shift, 4			;[5]
500
    mov		x2, shift			;[6]
501
    andi	x2, 0x9F			;[7]
502
    breq	unstuff4			;[8]
503
didunstuff4:
504
	nop2						;[9][10]
505
	nop							;[11]
506
 
507
; bit5							
508
	in		x2, USBIN			;[0] sample line state
509
    ldi		ZH, hi8(usbCrcTableHigh);[1] use the table for the higher byte
510
    eor		x1, x2				;[2]
511
    bst		x1, USBMINUS		;[3]
512
    bld 	shift, 5	 		;[4]
513
    mov		x1, shift			;[5]
514
    andi	x1, 0x3F			;[6]
515
    breq	unstuff5			;[7]
516
didunstuff5:
517
	lpm		x4, Z				;[8] load the higher crc xor-byte and store it for later use
518
								;[9] lpm needs 3 cycles
519
								;[10]			
520
	ldi		ZH, hi8(usbCrcTableLow);[11] load the lower crc xor byte adress
521
 
522
; bit6	    					
523
	in      x1, USBIN           ;[0] sample line state
524
    eor		x2, x1              ;[1]
525
    bst		x2, USBMINUS		;[2]
526
    bld		shift, 6			;[3]
527
    mov		x2, shift			;[4]
528
    andi	x2, 0x7E			;[5]
529
    breq	unstuff6			;[6]
530
didunstuff6:
531
	lpm		ZL, Z				;[7] load the lower xor crc byte
532
								;[8] lpm needs 3 cycles
533
	    						;[9]
534
	eor		ZL, x3				;[10] xor the old high crc byte with the low xor-byte
535
	mov		x3, x4				;[11] move the new high order crc value from temp to its destination
536
 
537
; bit7							
538
	in		x2, USBIN			;[0] sample line state
539
    eor		x1, x2				;[1]
540
    bst		x1, USBMINUS		;[2]
541
    bld 	shift, 7	 		;[3] now shift holds the complete but inverted data byte
542
    mov		x1, shift			;[4]
543
    andi	x1, 0xFC			;[5]
544
    breq	unstuff7			;[6]
545
didunstuff7:
546
	eor		x5, shift			;[7] x5 marks all bits which have not been inverted by the unstuffing subs
547
	mov		x4, x5				;[8] keep a copy of the data byte it will be stored during next bit0
548
	eor		ZL, x4				;[9] feed the actual byte into the crc algorithm
549
	rjmp	rxDataStart			;[10] next byte
550
								;[11] during the reception of the next byte this one will be fed int the crc algorithm
551
 
552
unstuff4:						;[9] this is the jump delay of rjmp unstuffX
553
	ori		shift, 0x10			;[10] invert the last received bit to prevent furhter unstuffing
554
	andi	x5, 0xEF			;[11] mark this bit as inverted (will be corrected before storing shift)
555
	in		x2, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
556
	eor		x1, x2				;[1] x1 and x2 have to be different because the stuff bit is always a zero
557
	andi	x1, USBMASK			;[2] mask the interesting bits
558
	breq	stuffErr2			;[3] if the stuff bit is a 1-bit something went wrong
559
	mov 	x1, x2				;[4] the next bit expects the last state to be in x1
560
	nop2						;[5]
561
								;[6]
562
	rjmp 	didunstuff4			;[7]
563
								;[8] jump delay of rjmp didunstuffX	
564
 
565
unstuff5:						;[8] this is the jump delay of rjmp unstuffX
566
	nop							;[9]
567
	ori		shift, 0x20			;[10] invert the last received bit to prevent furhter unstuffing
568
	andi	x5, 0xDF			;[11] mark this bit as inverted (will be corrected before storing shift)
569
	in		x1, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
570
	eor		x2, x1				;[1] x1 and x2 have to be different because the stuff bit is always a zero
571
	andi	x2, USBMASK			;[2] mask the interesting bits
572
	breq	stuffErr2			;[3] if the stuff bit is a 1-bit something went wrong
573
	mov 	x2, x1				;[4] the next bit expects the last state to be in x2
574
	nop							;[5]
575
	rjmp 	didunstuff5			;[6]
576
								;[7] jump delay of rjmp didunstuffX													
577
 
578
unstuff6:						;[7] this is the jump delay of rjmp unstuffX
579
	nop2						;[8]
580
								;[9]
581
	ori		shift, 0x40			;[10] invert the last received bit to prevent furhter unstuffing
582
	andi	x5, 0xBF			;[11] mark this bit as inverted (will be corrected before storing shift)
583
	in		x2, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
584
	eor		x1, x2				;[1] x1 and x2 have to be different because the stuff bit is always a zero
585
	andi	x1, USBMASK			;[2] mask the interesting bits
586
	breq	stuffErr2			;[3] if the stuff bit is a 1-bit something went wrong
587
	mov 	x1, x2				;[4] the next bit expects the last state to be in x1
588
	rjmp 	didunstuff6			;[5]
589
								;[6] jump delay of rjmp didunstuffX	
590
 
591
unstuff7:						;[7] this is the jump delay of rjmp unstuffX
592
	nop							;[8]
593
	nop							;[9]
594
	ori		shift, 0x80			;[10] invert the last received bit to prevent furhter unstuffing
595
	andi	x5, 0x7F			;[11] mark this bit as inverted (will be corrected before storing shift)
596
	in		x1, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
597
	eor		x2, x1				;[1] x1 and x2 have to be different because the stuff bit is always a zero
598
	andi	x2, USBMASK			;[2] mask the interesting bits
599
	breq	stuffErr2			;[3] if the stuff bit is a 1-bit something went wrong
600
	mov 	x2, x1				;[4] the next bit expects the last state to be in x2
601
	rjmp 	didunstuff7			;[5]
602
								;[6] jump delay of rjmp didunstuff7
603
 
604
; local copy of the stuffErr desitnation for the second half of the receiver loop
605
stuffErr2:
606
	rjmp	stuffErr
607
 
608
;--------------------------------------------------------------------------------------------------------------
609
; The crc table follows. It has to be aligned to enable a fast loading of the needed bytes.
610
; There are two tables of 256 entries each, the low and the high byte table.
611
; Table values were generated with the following C code:
612
/*
613
#include <stdio.h>
614
int main (int argc, char **argv)
615
{
616
	int i, j;
617
	for (i=0; i<512; i++){
618
		unsigned short crc = i & 0xff;
619
		for(j=0; j<8; j++) crc = (crc >> 1) ^ ((crc & 1) ? 0xa001 : 0);
620
		if((i & 7) == 0) printf("\n.byte ");
621
		printf("0x%02x, ", (i > 0xff ? (crc >> 8) : crc) & 0xff);
622
		if(i == 255) printf("\n");
623
	}
624
	return 0;
625
}
626
 
627
// Use the following algorithm to compute CRC values:
628
ushort computeCrc(uchar *msg, uchar msgLen)
629
{
630
    uchar i;
631
	ushort crc = 0xffff;
632
	for(i = 0; i < msgLen; i++)
633
		crc = usbCrcTable16[lo8(crc) ^ msg[i]] ^ hi8(crc);
634
    return crc;
635
}
636
*/
637
 
638
.balign 256
639
usbCrcTableLow:	
640
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
641
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
642
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
643
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
644
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
645
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
646
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
647
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
648
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
649
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
650
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
651
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
652
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
653
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
654
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
655
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
656
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
657
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
658
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
659
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
660
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
661
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
662
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
663
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
664
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
665
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
666
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
667
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
668
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
669
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
670
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
671
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
672
 
673
; .balign 256
674
usbCrcTableHigh:
675
.byte 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2
676
.byte 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04
677
.byte 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E
678
.byte 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8
679
.byte 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A
680
.byte 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC
681
.byte 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6
682
.byte 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10
683
.byte 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32
684
.byte 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4
685
.byte 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE
686
.byte 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38
687
.byte 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA
688
.byte 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C
689
.byte 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26
690
.byte 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0
691
.byte 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62
692
.byte 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4
693
.byte 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE
694
.byte 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68
695
.byte 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA
696
.byte 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C
697
.byte 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76
698
.byte 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0
699
.byte 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92
700
.byte 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54
701
.byte 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E
702
.byte 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98
703
.byte 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A
704
.byte 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C
705
.byte 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86
706
.byte 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40	
707