Subversion Repositories group.electronics

Rev

Rev 122 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
122 pfowler 1
/* Name: usbdrvasm18.inc
2
 * Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
3
 * Author: Lukas Schrittwieser (based on 20 MHz usbdrvasm20.inc by Jeroen Benschop)
4
 * Creation Date: 2009-01-20
5
 * Tabsize: 4
6
 * Copyright: (c) 2008 by Lukas Schrittwieser and OBJECTIVE DEVELOPMENT Software GmbH
7
 * License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
8
 */
9
 
10
/* Do not link this file! Link usbdrvasm.S instead, which includes the
11
 * appropriate implementation!
12
 */
13
 
14
/*
15
General Description:
16
This file is the 18 MHz version of the asssembler part of the USB driver. It
17
requires a 18 MHz crystal (not a ceramic resonator and not a calibrated RC
18
oscillator).
19
 
20
See usbdrv.h for a description of the entire driver.
21
 
22
Since almost all of this code is timing critical, don't change unless you
23
really know what you are doing! Many parts require not only a maximum number
24
of CPU cycles, but even an exact number of cycles!
25
*/
26
 
27
 
28
;max stack usage: [ret(2), YL, SREG, YH, [sofError], bitcnt(x5), shift, x1, x2, x3, x4, cnt, ZL, ZH] = 14 bytes
29
;nominal frequency: 18 MHz -> 12 cycles per bit
30
; Numbers in brackets are clocks counted from center of last sync bit
31
; when instruction starts
32
;register use in receive loop to receive the data bytes:
33
; shift assembles the byte currently being received
34
; x1 holds the D+ and D- line state
35
; x2 holds the previous line state
36
; cnt holds the number of bytes left in the receive buffer
37
; x3 holds the higher crc byte (see algorithm below)
38
; x4 is used as temporary register for the crc algorithm
39
; x5 is used for unstuffing: when unstuffing the last received bit is inverted in shift (to prevent further
40
;    unstuffing calls. In the same time the corresponding bit in x5 is cleared to mark the bit as beening iverted
41
; zl lower crc value and crc table index
42
; zh used for crc table accesses
43
 
44
;--------------------------------------------------------------------------------------------------------------
45
; CRC mods:
46
;  table driven crc checker, Z points to table in prog space
47
;   ZL is the lower crc byte, x3 is the higher crc byte
48
;	x4 is used as temp register to store different results
49
;	the initialization of the crc register is not 0xFFFF but 0xFE54. This is because during the receipt of the
50
;	first data byte an virtual zero data byte is added to the crc register, this results in the correct initial
51
;	value of 0xFFFF at beginning of the second data byte before the first data byte is added to the crc.
52
;	The magic number 0xFE54 results form the crc table: At tabH[0x54] = 0xFF = crcH (required) and
53
;	tabL[0x54] = 0x01  ->  crcL = 0x01 xor 0xFE = 0xFF
54
;  bitcnt is renamed to x5 and is used for unstuffing purposes, the unstuffing works like in the 12MHz version
55
;--------------------------------------------------------------------------------------------------------------
56
; CRC algorithm:
57
;	The crc register is formed by x3 (higher byte) and ZL (lower byte). The algorithm uses a 'reversed' form
58
;	i.e. that it takes the least significant bit first and shifts to the right. So in fact the highest order
59
;	bit seen from the polynomial devision point of view is the lsb of ZL. (If this sounds strange to you i
60
;	propose a research on CRC :-) )
61
;	Each data byte received is xored to ZL, the lower crc byte. This byte now builds the crc
62
;	table index. Next the new high byte is loaded from the table and stored in x4 until we have space in x3
63
;	(its destination).
64
;	Afterwards the lower table is loaded from the table and stored in ZL (the old index is overwritten as
65
;	we don't need it anymore. In fact this is a right shift by 8 bits.) Now the old crc high value is xored
66
;	to ZL, this is the second shift of the old crc value. Now x4 (the temp reg) is moved to x3 and the crc
67
; 	calculation is done.
68
;	Prior to the first byte the two CRC register have to be initialized to 0xFFFF (as defined in usb spec)
69
;	however the crc engine also runs during the receipt of the first byte, therefore x3 and zl are initialized
70
;	to a magic number which results in a crc value of 0xFFFF after the first complete byte.
71
;
72
;	This algorithm is split into the extra cycles of the different bits:
73
;	bit7:	XOR the received byte to ZL
74
;	bit5:	load the new high byte to x4
75
;	bit6:	load the lower xor byte from the table, xor zl and x3, store result in zl (=the new crc low value)
76
;			move x4 (the new high byte) to x3, the crc value is ready
77
;
78
 
79
 
80
macro POP_STANDARD ; 18 cycles
81
    pop		ZH
82
    pop		ZL
83
	pop     cnt
84
    pop     x5
85
    pop     x3
86
    pop     x2
87
    pop     x1
88
    pop     shift
89
    pop     x4
90
    endm
91
macro POP_RETI     ; 7 cycles
92
    pop     YH
93
    pop     YL
94
    out     SREG, YL
95
    pop     YL
96
    endm
97
 
98
macro CRC_CLEANUP_AND_CHECK
99
	; the last byte has already been xored with the lower crc byte, we have to do the table lookup and xor
100
	; x3 is the higher crc byte, zl the lower one
101
	ldi		ZH, hi8(usbCrcTableHigh);[+1] get the new high byte from the table
102
	lpm		x2, Z				;[+2][+3][+4]
103
	ldi		ZH, hi8(usbCrcTableLow);[+5] get the new low xor byte from the table
104
	lpm		ZL, Z				;[+6][+7][+8]
105
	eor		ZL, x3				;[+7] xor the old high byte with the value from the table, x2:ZL now holds the crc value
106
	cpi		ZL, 0x01			;[+8] if the crc is ok we have a fixed remainder value of 0xb001 in x2:ZL (see usb spec)
107
	brne	ignorePacket		;[+9] detected a crc fault -> paket is ignored and retransmitted by the host
108
	cpi		x2, 0xb0			;[+10]
109
	brne	ignorePacket		;[+11] detected a crc fault -> paket is ignored and retransmitted by the host
110
    endm
111
 
112
 
113
USB_INTR_VECTOR:
114
;order of registers pushed: YL, SREG, YH, [sofError], x4, shift, x1, x2, x3, x5, cnt, ZL, ZH
115
    push    YL                  ;[-28] push only what is necessary to sync with edge ASAP
116
    in      YL, SREG            ;[-26]
117
    push    YL                  ;[-25]
118
    push    YH                  ;[-23]
119
;----------------------------------------------------------------------------
120
; Synchronize with sync pattern:
121
;----------------------------------------------------------------------------
122
;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
123
;sync up with J to K edge during sync pattern -- use fastest possible loops
124
;The first part waits at most 1 bit long since we must be in sync pattern.
125
;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to
126
;waitForJ, ensure that this prerequisite is met.
127
waitForJ:
128
    inc     YL
129
    sbis    USBIN, USBMINUS
130
    brne    waitForJ        ; just make sure we have ANY timeout
131
waitForK:
132
;The following code results in a sampling window of < 1/4 bit which meets the spec.
133
    sbis    USBIN, USBMINUS     ;[-17]
134
    rjmp    foundK              ;[-16]
135
    sbis    USBIN, USBMINUS
136
    rjmp    foundK
137
    sbis    USBIN, USBMINUS
138
    rjmp    foundK
139
    sbis    USBIN, USBMINUS
140
    rjmp    foundK
141
    sbis    USBIN, USBMINUS
142
    rjmp    foundK
143
    sbis    USBIN, USBMINUS
144
    rjmp    foundK
145
    sbis    USBIN, USBMINUS
146
    rjmp    foundK
147
    sbis    USBIN, USBMINUS
148
    rjmp    foundK
149
    sbis    USBIN, USBMINUS
150
    rjmp    foundK
151
#if USB_COUNT_SOF
152
    lds     YL, usbSofCount
153
    inc     YL
154
    sts     usbSofCount, YL
155
#endif  /* USB_COUNT_SOF */
156
#ifdef USB_SOF_HOOK
157
    USB_SOF_HOOK
158
#endif
159
    rjmp    sofError
160
foundK:                         ;[-15]
161
;{3, 5} after falling D- edge, average delay: 4 cycles
162
;bit0 should be at 30  (2.5 bits) for center sampling. Currently at 4 so 26 cylces till bit 0 sample
163
;use 1 bit time for setup purposes, then sample again. Numbers in brackets
164
;are cycles from center of first sync (double K) bit after the instruction
165
    push    x4                  ;[-14]
166
;   [---]                       ;[-13]
167
    lds     YL, usbInputBufOffset;[-12] used to toggle the two usb receive buffers
168
;   [---]                       ;[-11]
169
    clr     YH                  ;[-10]
170
    subi    YL, lo8(-(usbRxBuf));[-9] [rx loop init]
171
    sbci    YH, hi8(-(usbRxBuf));[-8] [rx loop init]
172
    push    shift               ;[-7]
173
;   [---]                       ;[-6]
174
    ldi		shift, 0x80			;[-5] the last bit is the end of byte marker for the pid receiver loop
175
    clc			      	      	;[-4] the carry has to be clear for receipt of pid bit 0
176
    sbis    USBIN, USBMINUS     ;[-3] we want two bits K (sample 3 cycles too early)
177
    rjmp    haveTwoBitsK        ;[-2]
178
    pop     shift               ;[-1] undo the push from before
179
    pop     x4                  ;[1]
180
    rjmp    waitForK            ;[3] this was not the end of sync, retry
181
; The entire loop from waitForK until rjmp waitForK above must not exceed two
182
; bit times (= 24 cycles).
183
 
184
;----------------------------------------------------------------------------
185
; push more registers and initialize values while we sample the first bits:
186
;----------------------------------------------------------------------------
187
haveTwoBitsK:
188
    push    x1                  ;[0]
189
    push    x2                  ;[2]
190
    push    x3                  ;[4] crc high byte
191
    ldi     x2, 1<<USBPLUS      ;[6] [rx loop init] current line state is K state. D+=="1", D-=="0"
192
    push    x5                  ;[7]
193
    push    cnt                 ;[9]
194
    ldi     cnt, USB_BUFSIZE    ;[11]
195
 
196
 
197
;--------------------------------------------------------------------------------------------------------------
198
; receives the pid byte
199
; there is no real unstuffing algorithm implemented here as a stuffing bit is impossible in the pid byte.
200
; That's because the last four bits of the byte are the inverted of the first four bits. If we detect a
201
; unstuffing condition something went wrong and abort
202
; shift has to be initialized to 0x80
203
;--------------------------------------------------------------------------------------------------------------
204
 
205
; pid bit 0 - used for even more register saving (we need the z pointer)
206
	in      x1, USBIN           ;[0] sample line state
207
    andi    x1, USBMASK         ;[1] filter only D+ and D- bits
208
    eor		x2, x1				;[2] generate inverted of actual bit
209
	sbrc	x2, USBMINUS		;[3] if the bit is set we received a zero
210
	sec							;[4]
211
	ror		shift				;[5] we perform no unstuffing check here as this is the first bit
212
	mov		x2, x1				;[6]
213
	push	ZL					;[7]
214
								;[8]
215
	push	ZH					;[9]
216
								;[10]
217
	ldi		x3, 0xFE			;[11] x3 is the high order crc value
218
 
219
 
220
bitloopPid:						
221
	in      x1, USBIN           ;[0] sample line state
222
   	andi    x1, USBMASK         ;[1] filter only D+ and D- bits
223
    breq    nse0                ;[2] both lines are low so handle se0	
224
	eor		x2, x1				;[3] generate inverted of actual bit
225
	sbrc	x2, USBMINUS		;[4] set the carry if we received a zero
226
	sec							;[5]
227
	ror		shift				;[6]
228
	ldi		ZL, 0x54			;[7] ZL is the low order crc value
229
	ser		x4					;[8] the is no bit stuffing check here as the pid bit can't be stuffed. if so
230
								; some error occured. In this case the paket is discarded later on anyway.
231
	mov		x2, x1				;[9] prepare for the next cycle
232
	brcc	bitloopPid			;[10] while 0s drop out of shift we get the next bit
233
	eor		x4, shift			;[11] invert all bits in shift and store result in x4
234
 
235
;--------------------------------------------------------------------------------------------------------------
236
; receives data bytes and calculates the crc
237
; the last USBIN state has to be in x2
238
; this is only the first half, due to branch distanc limitations the second half of the loop is near the end
239
; of this asm file
240
;--------------------------------------------------------------------------------------------------------------
241
 
242
rxDataStart:
243
    in      x1, USBIN           ;[0] sample line state (note: a se0 check is not useful due to bit dribbling)
244
    ser		x5					;[1] prepare the unstuff marker register
245
    eor		x2, x1             	;[2] generates the inverted of the actual bit
246
    bst		x2, USBMINUS       	;[3] copy the bit from x2
247
    bld		shift, 0	        ;[4] and store it in shift
248
    mov		x2, shift	     	;[5] make a copy of shift for unstuffing check
249
    andi	x2, 0xF9	      	;[6] mask the last six bits, if we got six zeros (which are six ones in fact)
250
    breq	unstuff0	      	;[7] then Z is set now and we branch to the unstuffing handler
251
didunstuff0:
252
	subi    cnt, 1         		;[8] cannot use dec because it doesn't affect the carry flag
253
    brcs    nOverflow    		;[9] Too many bytes received. Ignore packet							
254
    st		Y+, x4				;[10] store the last received byte
255
								;[11] st needs two cycles
256
 
257
; bit1							
258
	in		x2, USBIN			;[0] sample line state
259
    andi	x1, USBMASK			;[1] check for se0 during bit 0
260
    breq	nse0				;[2]
261
    andi	x2, USBMASK			;[3] check se0 during bit 1
262
    breq	nse0				;[4]
263
	eor		x1, x2				;[5]
264
    bst		x1, USBMINUS		;[6]
265
    bld 	shift, 1	 		;[7]
266
    mov		x1, shift			;[8]
267
    andi	x1, 0xF3			;[9]
268
    breq	unstuff1			;[10]
269
didunstuff1:
270
	nop							;[11]	
271
 
272
; bit2
273
	in      x1, USBIN           ;[0] sample line state
274
    andi	x1, USBMASK			;[1] check for se0 (as there is nothing else to do here
275
	breq	nOverflow	 		;[2]
276
    eor		x2, x1              ;[3] generates the inverted of the actual bit
277
    bst		x2, USBMINUS		;[4]
278
    bld		shift, 2			;[5] store the bit
279
    mov		x2, shift			;[6]
280
    andi	x2, 0xE7			;[7] if we have six zeros here (which means six 1 in the stream)
281
    breq	unstuff2			;[8] the next bit is a stuffing bit
282
didunstuff2:
283
	nop2						;[9]
284
								;[10]
285
	nop							;[11]					
286
 
287
; bit3							
288
	in		x2, USBIN			;[0] sample line state
289
    andi	x2, USBMASK			;[1] check for se0
290
    breq	nOverflow           ;[2]
291
    eor		x1, x2				;[3]
292
    bst		x1, USBMINUS		;[4]
293
    bld 	shift, 3	 		;[5]
294
    mov		x1, shift			;[6]
295
    andi	x1, 0xCF			;[7]
296
    breq	unstuff3			;[8]
297
didunstuff3:
298
	nop							;[9]
299
	rjmp 	rxDataBit4			;[10]
300
								;[11]				
301
 
302
; the avr branch instructions allow an offset of +63 insturction only, so we need this
303
; 'local copy' of se0
304
nse0:		
305
	rjmp	se0					;[4]
306
								;[5]
307
; the same same as for se0 is needed for overflow and StuffErr
308
nOverflow:
309
stuffErr:
310
	rjmp	overflow
311
 
312
 
313
unstuff0:						;[8] this is the branch delay of breq unstuffX
314
	andi	x1, USBMASK			;[9] do an se0 check here (if the last crc byte ends with 5 one's we might end up here
315
	breq	didunstuff0			;[10] event tough the message is complete -> jump back and store the byte
316
	ori		shift, 0x01			;[11] invert the last received bit to prevent furhter unstuffing
317
	in		x2, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
318
	andi	x5, 0xFE			;[1] mark this bit as inverted (will be corrected before storing shift)
319
	eor		x1, x2				;[2] x1 and x2 have to be different because the stuff bit is always a zero
320
	andi	x1, USBMASK			;[3] mask the interesting bits
321
	breq	stuffErr			;[4] if the stuff bit is a 1-bit something went wrong
322
	mov 	x1, x2				;[5] the next bit expects the last state to be in x1
323
	rjmp 	didunstuff0			;[6]
324
								;[7] jump delay of rjmp didunstuffX	
325
 
326
unstuff1:						;[11] this is the jump delay of breq unstuffX
327
	in		x1, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
328
	ori		shift, 0x02			;[1] invert the last received bit to prevent furhter unstuffing
329
	andi	x5, 0xFD			;[2] mark this bit as inverted (will be corrected before storing shift)
330
	eor		x2, x1				;[3] x1 and x2 have to be different because the stuff bit is always a zero
331
	andi	x2, USBMASK			;[4] mask the interesting bits
332
	breq	stuffErr			;[5] if the stuff bit is a 1-bit something went wrong
333
	mov 	x2, x1				;[6] the next bit expects the last state to be in x2
334
	nop2						;[7]
335
								;[8]
336
	rjmp 	didunstuff1			;[9]
337
								;[10] jump delay of rjmp didunstuffX		
338
 
339
unstuff2:						;[9] this is the jump delay of breq unstuffX
340
	ori		shift, 0x04			;[10] invert the last received bit to prevent furhter unstuffing
341
	andi	x5, 0xFB			;[11] mark this bit as inverted (will be corrected before storing shift)
342
	in		x2, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
343
	eor		x1, x2				;[1] x1 and x2 have to be different because the stuff bit is always a zero
344
	andi	x1, USBMASK			;[2] mask the interesting bits
345
	breq	stuffErr			;[3] if the stuff bit is a 1-bit something went wrong
346
	mov 	x1, x2				;[4] the next bit expects the last state to be in x1
347
	nop2						;[5]
348
								;[6]
349
	rjmp 	didunstuff2			;[7]
350
								;[8] jump delay of rjmp didunstuffX	
351
 
352
unstuff3:						;[9] this is the jump delay of breq unstuffX
353
	ori		shift, 0x08			;[10] invert the last received bit to prevent furhter unstuffing
354
	andi	x5, 0xF7			;[11] mark this bit as inverted (will be corrected before storing shift)
355
	in		x1, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
356
	eor		x2, x1				;[1] x1 and x2 have to be different because the stuff bit is always a zero
357
	andi	x2, USBMASK			;[2] mask the interesting bits
358
	breq	stuffErr			;[3] if the stuff bit is a 1-bit something went wrong
359
	mov 	x2, x1				;[4] the next bit expects the last state to be in x2
360
	nop2						;[5]
361
								;[6]
362
	rjmp 	didunstuff3			;[7]
363
								;[8] jump delay of rjmp didunstuffX			
364
 
365
 
366
 
367
; the include has to be here due to branch distance restirctions
368
#define __USE_CRC__
369
#include "asmcommon.inc"
370
 
371
 
372
 
373
; USB spec says:
374
; idle = J
375
; J = (D+ = 0), (D- = 1)
376
; K = (D+ = 1), (D- = 0)
377
; Spec allows 7.5 bit times from EOP to SOP for replies
378
; 7.5 bit times is 90 cycles. ...there is plenty of time
379
 
380
 
381
sendNakAndReti:
382
    ldi     x3, USBPID_NAK  ;[-18]
383
    rjmp    sendX3AndReti   ;[-17]
384
sendAckAndReti:
385
    ldi     cnt, USBPID_ACK ;[-17]
386
sendCntAndReti:
387
    mov     x3, cnt         ;[-16]
388
sendX3AndReti:
389
    ldi     YL, 20          ;[-15] x3==r20 address is 20
390
    ldi     YH, 0           ;[-14]
391
    ldi     cnt, 2          ;[-13]
392
;   rjmp    usbSendAndReti      fallthrough
393
 
394
;usbSend:
395
;pointer to data in 'Y'
396
;number of bytes in 'cnt' -- including sync byte [range 2 ... 12]
397
;uses: x1...x4, btcnt, shift, cnt, Y
398
;Numbers in brackets are time since first bit of sync pattern is sent
399
 
400
usbSendAndReti:             ; 12 cycles until SOP
401
    in      x2, USBDDR      ;[-12]
402
    ori     x2, USBMASK     ;[-11]
403
    sbi     USBOUT, USBMINUS;[-10] prepare idle state; D+ and D- must have been 0 (no pullups)
404
    in      x1, USBOUT      ;[-8] port mirror for tx loop
405
    out     USBDDR, x2      ;[-6] <- acquire bus
406
	ldi		x2, 0			;[-6] init x2 (bitstuff history) because sync starts with 0
407
    ldi     x4, USBMASK     ;[-5] exor mask
408
    ldi     shift, 0x80     ;[-4] sync byte is first byte sent
409
txByteLoop:
410
    ldi     bitcnt, 0x40    ;[-3]=[9]     binary 01000000
411
txBitLoop:					; the loop sends the first 7 bits of the byte
412
    sbrs    shift, 0        ;[-2]=[10] if we have to send a 1 don't change the line state
413
    eor     x1, x4          ;[-1]=[11]
414
    out     USBOUT, x1      ;[0]
415
    ror     shift           ;[1]
416
    ror     x2              ;[2] transfers the last sent bit to the stuffing history
417
didStuffN:
418
    nop	                    ;[3]
419
    nop                     ;[4]
420
    cpi     x2, 0xfc        ;[5] if we sent six consecutive ones
421
    brcc    bitstuffN       ;[6]
422
    lsr     bitcnt          ;[7]
423
    brne    txBitLoop       ;[8] restart the loop while the 1 is still in the bitcount
424
 
425
; transmit bit 7
426
    sbrs    shift, 0        ;[9]
427
    eor     x1, x4          ;[10]
428
didStuff7:
429
    ror     shift           ;[11]
430
	out     USBOUT, x1      ;[0] transfer bit 7 to the pins
431
    ror     x2              ;[1] move the bit into the stuffing history	
432
    cpi     x2, 0xfc        ;[2]
433
    brcc    bitstuff7       ;[3]
434
    ld      shift, y+       ;[4] get next byte to transmit
435
    dec     cnt             ;[5] decrement byte counter
436
    brne    txByteLoop      ;[7] if we have more bytes start next one
437
    						;[8] branch delay
438
 
439
;make SE0:
440
    cbr     x1, USBMASK     ;[8] 		prepare SE0 [spec says EOP may be 25 to 30 cycles]
441
    lds     x2, usbNewDeviceAddr;[9]
442
    lsl     x2              ;[11] 		we compare with left shifted address
443
    out     USBOUT, x1      ;[0] 		<-- out SE0 -- from now 2 bits = 24 cycles until bus idle
444
    subi    YL, 20 + 2      ;[1] 		Only assign address on data packets, not ACK/NAK in x3
445
    sbci    YH, 0           ;[2]
446
;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
447
;set address only after data packet was sent, not after handshake
448
    breq    skipAddrAssign  ;[3]
449
    sts     usbDeviceAddr, x2		; if not skipped: SE0 is one cycle longer
450
skipAddrAssign:
451
;end of usbDeviceAddress transfer
452
    ldi     x2, 1<<USB_INTR_PENDING_BIT;[5] int0 occurred during TX -- clear pending flag
453
    USB_STORE_PENDING(x2)   ;[6]
454
    ori     x1, USBIDLE     ;[7]
455
    in      x2, USBDDR      ;[8]
456
    cbr     x2, USBMASK     ;[9] set both pins to input
457
    mov     x3, x1          ;[10]
458
    cbr     x3, USBMASK     ;[11] configure no pullup on both pins
459
    ldi     x4, 4           ;[12]
460
se0Delay:
461
    dec     x4              ;[13] [16] [19] [22]
462
    brne    se0Delay        ;[14] [17] [20] [23]
463
    out     USBOUT, x1      ;[24] <-- out J (idle) -- end of SE0 (EOP signal)
464
    out     USBDDR, x2      ;[25] <-- release bus now
465
    out     USBOUT, x3      ;[26] <-- ensure no pull-up resistors are active
466
    rjmp    doReturn
467
 
468
bitstuffN:
469
    eor     x1, x4          ;[8] generate a zero
470
    ldi     x2, 0           ;[9] reset the bit stuffing history
471
    nop2                    ;[10]
472
    out     USBOUT, x1      ;[0] <-- send the stuffing bit
473
    rjmp    didStuffN       ;[1]
474
 
475
bitstuff7:
476
    eor     x1, x4          ;[5]
477
    ldi     x2, 0           ;[6] reset bit stuffing history
478
    clc						;[7] fill a zero into the shift register
479
    rol     shift           ;[8] compensate for ror shift at branch destination
480
    rjmp    didStuff7       ;[9]
481
    						;[10] jump delay
482
 
483
;--------------------------------------------------------------------------------------------------------------
484
; receives data bytes and calculates the crc
485
; second half of the data byte receiver loop
486
; most parts of the crc algorithm are here
487
;--------------------------------------------------------------------------------------------------------------
488
 
489
nOverflow2:
490
	rjmp overflow
491
 
492
rxDataBit4:
493
	in      x1, USBIN           ;[0] sample line state
494
    andi	x1, USBMASK			;[1] check for se0
495
    breq	nOverflow2			;[2]
496
    eor		x2, x1              ;[3]
497
    bst		x2, USBMINUS		;[4]
498
    bld		shift, 4			;[5]
499
    mov		x2, shift			;[6]
500
    andi	x2, 0x9F			;[7]
501
    breq	unstuff4			;[8]
502
didunstuff4:
503
	nop2						;[9][10]
504
	nop							;[11]
505
 
506
; bit5							
507
	in		x2, USBIN			;[0] sample line state
508
    ldi		ZH, hi8(usbCrcTableHigh);[1] use the table for the higher byte
509
    eor		x1, x2				;[2]
510
    bst		x1, USBMINUS		;[3]
511
    bld 	shift, 5	 		;[4]
512
    mov		x1, shift			;[5]
513
    andi	x1, 0x3F			;[6]
514
    breq	unstuff5			;[7]
515
didunstuff5:
516
	lpm		x4, Z				;[8] load the higher crc xor-byte and store it for later use
517
								;[9] lpm needs 3 cycles
518
								;[10]			
519
	ldi		ZH, hi8(usbCrcTableLow);[11] load the lower crc xor byte adress
520
 
521
; bit6	    					
522
	in      x1, USBIN           ;[0] sample line state
523
    eor		x2, x1              ;[1]
524
    bst		x2, USBMINUS		;[2]
525
    bld		shift, 6			;[3]
526
    mov		x2, shift			;[4]
527
    andi	x2, 0x7E			;[5]
528
    breq	unstuff6			;[6]
529
didunstuff6:
530
	lpm		ZL, Z				;[7] load the lower xor crc byte
531
								;[8] lpm needs 3 cycles
532
	    						;[9]
533
	eor		ZL, x3				;[10] xor the old high crc byte with the low xor-byte
534
	mov		x3, x4				;[11] move the new high order crc value from temp to its destination
535
 
536
; bit7							
537
	in		x2, USBIN			;[0] sample line state
538
    eor		x1, x2				;[1]
539
    bst		x1, USBMINUS		;[2]
540
    bld 	shift, 7	 		;[3] now shift holds the complete but inverted data byte
541
    mov		x1, shift			;[4]
542
    andi	x1, 0xFC			;[5]
543
    breq	unstuff7			;[6]
544
didunstuff7:
545
	eor		x5, shift			;[7] x5 marks all bits which have not been inverted by the unstuffing subs
546
	mov		x4, x5				;[8] keep a copy of the data byte it will be stored during next bit0
547
	eor		ZL, x4				;[9] feed the actual byte into the crc algorithm
548
	rjmp	rxDataStart			;[10] next byte
549
								;[11] during the reception of the next byte this one will be fed int the crc algorithm
550
 
551
unstuff4:						;[9] this is the jump delay of rjmp unstuffX
552
	ori		shift, 0x10			;[10] invert the last received bit to prevent furhter unstuffing
553
	andi	x5, 0xEF			;[11] mark this bit as inverted (will be corrected before storing shift)
554
	in		x2, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
555
	eor		x1, x2				;[1] x1 and x2 have to be different because the stuff bit is always a zero
556
	andi	x1, USBMASK			;[2] mask the interesting bits
557
	breq	stuffErr2			;[3] if the stuff bit is a 1-bit something went wrong
558
	mov 	x1, x2				;[4] the next bit expects the last state to be in x1
559
	nop2						;[5]
560
								;[6]
561
	rjmp 	didunstuff4			;[7]
562
								;[8] jump delay of rjmp didunstuffX	
563
 
564
unstuff5:						;[8] this is the jump delay of rjmp unstuffX
565
	nop							;[9]
566
	ori		shift, 0x20			;[10] invert the last received bit to prevent furhter unstuffing
567
	andi	x5, 0xDF			;[11] mark this bit as inverted (will be corrected before storing shift)
568
	in		x1, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
569
	eor		x2, x1				;[1] x1 and x2 have to be different because the stuff bit is always a zero
570
	andi	x2, USBMASK			;[2] mask the interesting bits
571
	breq	stuffErr2			;[3] if the stuff bit is a 1-bit something went wrong
572
	mov 	x2, x1				;[4] the next bit expects the last state to be in x2
573
	nop							;[5]
574
	rjmp 	didunstuff5			;[6]
575
								;[7] jump delay of rjmp didunstuffX													
576
 
577
unstuff6:						;[7] this is the jump delay of rjmp unstuffX
578
	nop2						;[8]
579
								;[9]
580
	ori		shift, 0x40			;[10] invert the last received bit to prevent furhter unstuffing
581
	andi	x5, 0xBF			;[11] mark this bit as inverted (will be corrected before storing shift)
582
	in		x2, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
583
	eor		x1, x2				;[1] x1 and x2 have to be different because the stuff bit is always a zero
584
	andi	x1, USBMASK			;[2] mask the interesting bits
585
	breq	stuffErr2			;[3] if the stuff bit is a 1-bit something went wrong
586
	mov 	x1, x2				;[4] the next bit expects the last state to be in x1
587
	rjmp 	didunstuff6			;[5]
588
								;[6] jump delay of rjmp didunstuffX	
589
 
590
unstuff7:						;[7] this is the jump delay of rjmp unstuffX
591
	nop							;[8]
592
	nop							;[9]
593
	ori		shift, 0x80			;[10] invert the last received bit to prevent furhter unstuffing
594
	andi	x5, 0x7F			;[11] mark this bit as inverted (will be corrected before storing shift)
595
	in		x1, USBIN			;[0] we have some free cycles so we could check for bit stuffing errors
596
	eor		x2, x1				;[1] x1 and x2 have to be different because the stuff bit is always a zero
597
	andi	x2, USBMASK			;[2] mask the interesting bits
598
	breq	stuffErr2			;[3] if the stuff bit is a 1-bit something went wrong
599
	mov 	x2, x1				;[4] the next bit expects the last state to be in x2
600
	rjmp 	didunstuff7			;[5]
601
								;[6] jump delay of rjmp didunstuff7
602
 
603
; local copy of the stuffErr desitnation for the second half of the receiver loop
604
stuffErr2:
605
	rjmp	stuffErr
606
 
607
;--------------------------------------------------------------------------------------------------------------
608
; The crc table follows. It has to be aligned to enable a fast loading of the needed bytes.
609
; There are two tables of 256 entries each, the low and the high byte table.
610
; Table values were generated with the following C code:
611
/*
612
#include <stdio.h>
613
int main (int argc, char **argv)
614
{
615
	int i, j;
616
	for (i=0; i<512; i++){
617
		unsigned short crc = i & 0xff;
618
		for(j=0; j<8; j++) crc = (crc >> 1) ^ ((crc & 1) ? 0xa001 : 0);
619
		if((i & 7) == 0) printf("\n.byte ");
620
		printf("0x%02x, ", (i > 0xff ? (crc >> 8) : crc) & 0xff);
621
		if(i == 255) printf("\n");
622
	}
623
	return 0;
624
}
625
 
626
// Use the following algorithm to compute CRC values:
627
ushort computeCrc(uchar *msg, uchar msgLen)
628
{
629
    uchar i;
630
	ushort crc = 0xffff;
631
	for(i = 0; i < msgLen; i++)
632
		crc = usbCrcTable16[lo8(crc) ^ msg[i]] ^ hi8(crc);
633
    return crc;
634
}
635
*/
636
 
637
.balign 256
638
usbCrcTableLow:	
639
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
640
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
641
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
642
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
643
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
644
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
645
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
646
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
647
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
648
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
649
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
650
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
651
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
652
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
653
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
654
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
655
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
656
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
657
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
658
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
659
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
660
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
661
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
662
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
663
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
664
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
665
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
666
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
667
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
668
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
669
.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
670
.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
671
 
672
; .balign 256
673
usbCrcTableHigh:
674
.byte 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2
675
.byte 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04
676
.byte 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E
677
.byte 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8
678
.byte 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A
679
.byte 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC
680
.byte 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6
681
.byte 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10
682
.byte 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32
683
.byte 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4
684
.byte 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE
685
.byte 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38
686
.byte 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA
687
.byte 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C
688
.byte 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26
689
.byte 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0
690
.byte 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62
691
.byte 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4
692
.byte 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE
693
.byte 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68
694
.byte 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA
695
.byte 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C
696
.byte 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76
697
.byte 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0
698
.byte 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92
699
.byte 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54
700
.byte 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E
701
.byte 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98
702
.byte 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A
703
.byte 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C
704
.byte 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86
705
.byte 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40	
706