75 |
pfowler |
1 |
/* Name: main.c
|
|
|
2 |
* Project: EasyLogger
|
|
|
3 |
* Author: Christian Starkjohann
|
|
|
4 |
* Creation Date: 2006-04-23
|
|
|
5 |
* Tabsize: 4
|
|
|
6 |
* Copyright: (c) 2006 by OBJECTIVE DEVELOPMENT Software GmbH
|
|
|
7 |
* License: Proprietary, free under certain conditions. See Documentation.
|
|
|
8 |
* This Revision: $Id$
|
|
|
9 |
*/
|
|
|
10 |
|
|
|
11 |
#include <avr/io.h>
|
|
|
12 |
#include <avr/wdt.h>
|
|
|
13 |
#include <avr/eeprom.h>
|
|
|
14 |
#include <avr/interrupt.h>
|
|
|
15 |
#include <avr/pgmspace.h>
|
|
|
16 |
#include <util/delay.h>
|
|
|
17 |
|
|
|
18 |
#include "usbdrv.h"
|
|
|
19 |
#include "oddebug.h"
|
|
|
20 |
#include "config.h"
|
|
|
21 |
|
|
|
22 |
#ifndef NULL
|
|
|
23 |
#define NULL ((void *)0)
|
|
|
24 |
#endif
|
|
|
25 |
|
|
|
26 |
/* ------------------------------------------------------------------------- */
|
|
|
27 |
|
|
|
28 |
//static uchar reportBuffer[6]; /* buffer for HID reports */
|
|
|
29 |
volatile int16_t axis[3];
|
|
|
30 |
|
|
|
31 |
struct {
|
|
|
32 |
union {
|
|
|
33 |
int16_t axis[3];
|
|
|
34 |
struct {
|
|
|
35 |
int16_t axis0:16;
|
|
|
36 |
int16_t axis1:16;
|
|
|
37 |
int16_t axis2:16;
|
|
|
38 |
};
|
|
|
39 |
};
|
|
|
40 |
} reportBuffer;
|
|
|
41 |
|
|
|
42 |
|
|
|
43 |
volatile struct {
|
|
|
44 |
uint8_t current;
|
|
|
45 |
uint8_t last;
|
|
|
46 |
uint8_t mask;
|
|
|
47 |
} pcInt[1];
|
|
|
48 |
|
|
|
49 |
static uchar idleRate; /* in 4 ms units */
|
|
|
50 |
|
|
|
51 |
/* ------------------------------------------------------------------------- */
|
|
|
52 |
|
|
|
53 |
const PROGMEM char usbHidReportDescriptor[USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH] = { /* USB report descriptor */
|
|
|
54 |
0x05, 0x01, // USAGE_PAGE (Generic Desktop)
|
|
|
55 |
0x09, 0x05, // USAGE (Game Pad)
|
|
|
56 |
0xa1, 0x01, // COLLECTION (Application)
|
|
|
57 |
0x09, 0x01, // USAGE (Pointer)
|
|
|
58 |
0xa1, 0x00, // COLLECTION (Physical)
|
|
|
59 |
0x09, 0x30, // USAGE (X)
|
|
|
60 |
0x09, 0x31, // USAGE (Y)
|
|
|
61 |
0x09, 0x38, // USAGE (Y)
|
|
|
62 |
0x16, 0x00, 0x80, // Log Min -32768
|
|
|
63 |
0x26, 0xff, 0x7f, // Log max 32768
|
|
|
64 |
0x75, 0x10, // REPORT_SIZE (16)
|
|
|
65 |
0x95, 0x03, // REPORT_COUNT (2)
|
|
|
66 |
0x81, 0x02, // INPUT (Data,Var,Abs)
|
|
|
67 |
0xc0, // END_COLLECTION
|
|
|
68 |
0xc0 // END_COLLECTION
|
|
|
69 |
};
|
|
|
70 |
|
|
|
71 |
|
|
|
72 |
|
|
|
73 |
/* ------------------------------------------------------------------------- */
|
|
|
74 |
/* ------------------------ interface to USB driver ------------------------ */
|
|
|
75 |
/* ------------------------------------------------------------------------- */
|
|
|
76 |
|
|
|
77 |
uchar usbFunctionSetup(uchar data[8])
|
|
|
78 |
{
|
|
|
79 |
usbRequest_t *rq = (void *)data;
|
|
|
80 |
|
|
|
81 |
//usbMsgPtr = reportBuffer;
|
|
|
82 |
if((rq->bmRequestType & USBRQ_TYPE_MASK) == USBRQ_TYPE_CLASS){
|
|
|
83 |
if(rq->bRequest == USBRQ_HID_GET_REPORT){
|
|
|
84 |
return sizeof(reportBuffer);
|
|
|
85 |
}else if(rq->bRequest == USBRQ_HID_GET_IDLE){
|
|
|
86 |
usbMsgPtr = &idleRate;
|
|
|
87 |
return 1;
|
|
|
88 |
}else if(rq->bRequest == USBRQ_HID_SET_IDLE){
|
|
|
89 |
idleRate = rq->wValue.bytes[1];
|
|
|
90 |
}
|
|
|
91 |
}else{
|
|
|
92 |
|
|
|
93 |
}
|
|
|
94 |
return 0;
|
|
|
95 |
}
|
|
|
96 |
|
|
|
97 |
|
|
|
98 |
/* ------------------------------------------------------------------------- */
|
|
|
99 |
/* ------------------------ Oscillator Calibration ------------------------- */
|
|
|
100 |
/* ------------------------------------------------------------------------- */
|
|
|
101 |
|
|
|
102 |
/* Calibrate the RC oscillator to 8.25 MHz. The core clock of 16.5 MHz is
|
|
|
103 |
* derived from the 66 MHz peripheral clock by dividing. Our timing reference
|
|
|
104 |
* is the Start Of Frame signal (a single SE0 bit) available immediately after
|
|
|
105 |
* a USB RESET. We first do a binary search for the OSCCAL value and then
|
|
|
106 |
* optimize this value with a neighboorhod search.
|
|
|
107 |
* This algorithm may also be used to calibrate the RC oscillator directly to
|
|
|
108 |
* 12 MHz (no PLL involved, can therefore be used on almost ALL AVRs), but this
|
|
|
109 |
* is wide outside the spec for the OSCCAL value and the required precision for
|
|
|
110 |
* the 12 MHz clock! Use the RC oscillator calibrated to 12 MHz for
|
|
|
111 |
* experimental purposes only!
|
|
|
112 |
*/
|
|
|
113 |
static void calibrateOscillator(void)
|
|
|
114 |
{
|
|
|
115 |
uchar step = 128;
|
|
|
116 |
uchar trialValue = 0, optimumValue;
|
|
|
117 |
int x, optimumDev, targetValue = (unsigned)(1499 * (double)F_CPU / 10.5e6 + 0.5);
|
|
|
118 |
|
|
|
119 |
/* do a binary search: */
|
|
|
120 |
do{
|
|
|
121 |
OSCCAL = trialValue + step;
|
|
|
122 |
x = usbMeasureFrameLength(); /* proportional to current real frequency */
|
|
|
123 |
if(x < targetValue) /* frequency still too low */
|
|
|
124 |
trialValue += step;
|
|
|
125 |
step >>= 1;
|
|
|
126 |
}while(step > 0);
|
|
|
127 |
/* We have a precision of +/- 1 for optimum OSCCAL here */
|
|
|
128 |
/* now do a neighborhood search for optimum value */
|
|
|
129 |
optimumValue = trialValue;
|
|
|
130 |
optimumDev = x; /* this is certainly far away from optimum */
|
|
|
131 |
for(OSCCAL = trialValue - 1; OSCCAL <= trialValue + 1; OSCCAL++){
|
|
|
132 |
x = usbMeasureFrameLength() - targetValue;
|
|
|
133 |
if(x < 0)
|
|
|
134 |
x = -x;
|
|
|
135 |
if(x < optimumDev){
|
|
|
136 |
optimumDev = x;
|
|
|
137 |
optimumValue = OSCCAL;
|
|
|
138 |
}
|
|
|
139 |
}
|
|
|
140 |
OSCCAL = optimumValue;
|
|
|
141 |
}
|
|
|
142 |
/*
|
|
|
143 |
Note: This calibration algorithm may try OSCCAL values of up to 192 even if
|
|
|
144 |
the optimum value is far below 192. It may therefore exceed the allowed clock
|
|
|
145 |
frequency of the CPU in low voltage designs!
|
|
|
146 |
You may replace this search algorithm with any other algorithm you like if
|
|
|
147 |
you have additional constraints such as a maximum CPU clock.
|
|
|
148 |
For version 5.x RC oscillators (those with a split range of 2x128 steps, e.g.
|
|
|
149 |
ATTiny25, ATTiny45, ATTiny85), it may be useful to search for the optimum in
|
|
|
150 |
both regions.
|
|
|
151 |
*/
|
|
|
152 |
|
|
|
153 |
void usbEventResetReady(void)
|
|
|
154 |
{
|
|
|
155 |
/* Disable interrupts during oscillator calibration since
|
|
|
156 |
* usbMeasureFrameLength() counts CPU cycles.
|
|
|
157 |
*/
|
|
|
158 |
cli();
|
|
|
159 |
calibrateOscillator();
|
|
|
160 |
sei();
|
|
|
161 |
eeprom_write_byte(0, OSCCAL); /* store the calibrated value in EEPROM */
|
|
|
162 |
}
|
|
|
163 |
|
|
|
164 |
|
|
|
165 |
void usbSendHidReport(uchar * data, uchar len) {
|
|
|
166 |
while(1)
|
|
|
167 |
{
|
|
|
168 |
usbPoll();
|
|
|
169 |
if (usbInterruptIsReady())
|
|
|
170 |
{
|
|
|
171 |
usbSetInterrupt(data, len);
|
|
|
172 |
break;
|
|
|
173 |
}
|
|
|
174 |
}
|
|
|
175 |
}
|
|
|
176 |
|
|
|
177 |
|
|
|
178 |
int main(void)
|
|
|
179 |
{
|
|
|
180 |
uchar i;
|
|
|
181 |
uchar calibrationValue;
|
|
|
182 |
|
|
|
183 |
calibrationValue = eeprom_read_byte(0); /* calibration value from last time */
|
|
|
184 |
if(calibrationValue != 0xff){
|
|
|
185 |
OSCCAL = calibrationValue;
|
|
|
186 |
}
|
|
|
187 |
|
|
|
188 |
odDebugInit();
|
|
|
189 |
usbDeviceDisconnect();
|
|
|
190 |
for(i=0;i<20;i++){ /* 300 ms disconnect */
|
|
|
191 |
_delay_ms(15);
|
|
|
192 |
}
|
|
|
193 |
|
|
|
194 |
usbDeviceConnect();
|
|
|
195 |
wdt_enable(WDTO_1S);
|
|
|
196 |
|
|
|
197 |
PCMSK |= (( 1 << PCINT3 ) | ( 1 << PCINT4 )); //enable encoder pins interrupt sources
|
|
|
198 |
GIMSK |= ( 1 << PCIE ); //enable pin change interupts
|
|
|
199 |
|
|
|
200 |
DDRB = 0B00000001;
|
|
|
201 |
PORTB = 0B00000000;
|
|
|
202 |
|
|
|
203 |
usbInit();
|
|
|
204 |
sei();
|
|
|
205 |
|
|
|
206 |
axis[0] = 0;
|
|
|
207 |
axis[1] = 0;
|
|
|
208 |
axis[2] = 0;
|
|
|
209 |
|
|
|
210 |
reportBuffer.axis0 = axis[0];
|
|
|
211 |
reportBuffer.axis1 = axis[1];
|
|
|
212 |
reportBuffer.axis2 = axis[2];
|
|
|
213 |
|
|
|
214 |
|
|
|
215 |
//reportBuffer[1] = 0xff;
|
|
|
216 |
|
|
|
217 |
for(;;){ /* main event loop */
|
|
|
218 |
wdt_reset();
|
|
|
219 |
usbPoll();
|
|
|
220 |
|
|
|
221 |
if(usbInterruptIsReady()){
|
|
|
222 |
//usbSetInterrupt(reportBuffer, sizeof(reportBuffer));
|
|
|
223 |
usbSendHidReport(&reportBuffer, sizeof(reportBuffer));
|
|
|
224 |
}
|
|
|
225 |
}
|
|
|
226 |
return 0;
|
|
|
227 |
}
|
|
|
228 |
|
|
|
229 |
void pcInterrupt(uint8_t pcint) {
|
|
|
230 |
|
|
|
231 |
switch (pcint) {
|
|
|
232 |
case 0: pcInt[pcint].current = PINB; break;
|
|
|
233 |
}
|
|
|
234 |
pcInt[pcint].mask = pcInt[pcint].current ^ pcInt[pcint].last;
|
|
|
235 |
pcInt[pcint].last = pcInt[pcint].current;
|
|
|
236 |
|
|
|
237 |
if (pcInt[pcint].mask == 0)
|
|
|
238 |
return;
|
|
|
239 |
|
|
|
240 |
// Check which pin caused the interrupt. If they both
|
|
|
241 |
// equal 0, the pin that interrupted is the direction
|
|
|
242 |
if (rbi(pcInt[pcint].current, PCINT3) == 0
|
|
|
243 |
&& rbi(pcInt[pcint].current, PCINT4) == 0
|
|
|
244 |
&& rbi(pcInt[pcint].mask, PCINT4) ) {
|
|
|
245 |
if (reportBuffer.axis2 < 32500)
|
|
|
246 |
reportBuffer.axis2 += 200;
|
|
|
247 |
} else if (rbi(pcInt[pcint].current, PCINT3) == 0
|
|
|
248 |
&& rbi(pcInt[pcint].current, PCINT4) == 0
|
|
|
249 |
&& rbi(pcInt[pcint].mask, PCINT3) ) {
|
|
|
250 |
if (reportBuffer.axis2 > -32500)
|
|
|
251 |
reportBuffer.axis2 -= 200;
|
|
|
252 |
}
|
|
|
253 |
|
|
|
254 |
// Clear the mask so we know we've delth with it
|
|
|
255 |
pcInt[pcint].mask = 0;
|
|
|
256 |
}
|
|
|
257 |
|
|
|
258 |
ISR(PCINT0_vect) {
|
|
|
259 |
pcInterrupt(0);
|
|
|
260 |
}
|