Rev 94 | Rev 97 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <avr/wdt.h>
#include <usbdrv.h>
#include <stdlib.h>
#include <string.h>
#include "lcd.h"
#include "util.h"
#include "wire.h"
#include "config.h"
#include "hiddesc.h"
#define ROTS_ATTACHED 1
#define STAT 0
#define SENT 1
#define SWITCHES 1
#define ON 1
#define OFF 0
#define DETECTED 0
#define TIMER 1
#define DEBOUNCED 2
/*
* Keyboard modifier codes
*/
#define MOD_CONTROL_LEFT (1<<0)
#define MOD_SHIFT_LEFT (1<<1)
#define MOD_ALT_LEFT (1<<2)
#define MOD_GUI_LEFT (1<<3)
#define MOD_CONTROL_RIGHT (1<<4)
#define MOD_SHIFT_RIGHT (1<<5)
#define MOD_ALT_RIGHT (1<<6)
#define MOD_GUI_RIGHT (1<<7)
void doInt(uint8_t pcint);
uint8_t getKey(void);
uint8_t oldpotVal = 0;
volatile uint8_t tmr0_ovf = 0;
volatile uint8_t tmr2_ovf = 0;
volatile uint32_t systime = 0;
volatile uint8_t lcdupdate = 1;
uint8_t emblock[] = { 0B00011111,
0B00010001,
0B00010001,
0B00010001,
0B00010001,
0B00010001,
0B00010001,
0B00011111 };
volatile struct {
uint8_t current;
uint8_t last;
uint8_t mask;
} pcInt[3];
// switches = [detected][timer][debounced]
volatile uint8_t switches[1][3] = { {0,0,0} };
// rotData = [rot#][(stat|sent)]
//volatile uint8_t rotData[2][2] = { {0,0}, {0,0} };
volatile struct {
union {
uint8_t data;
struct {
uint8_t stat:4;
uint8_t sent:4;
};
};
} rotData[2];
// * = 0x25, #=0x20
// F9 = 0x42, F12 = 0x45
uint8_t keyMap[] = { 0x1E, 0x1F, 0x20,
0x21, 0x22, 0x23,
0x24, 0x25, 0x26,
0x42, 0x27, 0x45 };
uint8_t keySelect = 1;
struct {
uint8_t report_id;
uint8_t modifier;
uint8_t keycode;
} reportKeyboard;
struct{
uint8_t report_id;
union {
uint8_t data1[2];
struct {
uint8_t rx:8;
uint8_t ry:8;
};
};
union {
uint16_t data2;
struct {
uint16_t buttons:12;
uint16_t rot2a:1;
uint16_t rot2b:1;
uint16_t rot1a:1;
uint16_t rot1b:1;
};
};
} reportJoystick;
void usbSendHidReport(uchar * data, uchar len) {
while(1)
{
usbPoll();
if (usbInterruptIsReady())
{
usbSetInterrupt(data, len);
break;
}
}
}
usbMsgLen_t usbFunctionSetup(uchar data[8]) {
usbRequest_t *rq = (void *)data;
if((rq->bmRequestType & USBRQ_TYPE_MASK) == USBRQ_TYPE_CLASS) {
switch (rq->bRequest) {
case USBRQ_HID_GET_REPORT:
if (rq->wValue.bytes[0] == 1)
return sizeof(reportKeyboard);
else if (rq->wValue.bytes[0] == 2)
return sizeof(reportJoystick);
else
return 0;
case USBRQ_HID_GET_IDLE:
return 1;
default:
return 0;
}
}
return 0;
}
void hadUsbReset(void) {
}
int main(void) {
analogInit();
/*
DDR : 1 = Output, 0 = Input
PORT: 1 = Pullup for Input, otherwise set output
PIN : Read input pin
*/
/*
PB0 - Output - Keypad 2
PB1 - Output - Keypad 7
PB2 - Output - Keypad 6
PB3 - Output - Keypad 4
PB4 - Input, Pullup - Function select
PB5 - Input, Pullup - Function select
*/
DDRB = 0B00001111;
PORTB = 0B00111111;
/*
PD0 - Input, Pullup, PCINT16 - Rotary 1a
PD1 - Input, Pullup, PCINT17 - Rotary 1b
PD4 - Output - Keypad select status led
PD5 - Input, Pullup - Keypad 3
PD6 - Input, Pullup - Keypad 1
PD7 - Input, Pullup - Keypad 5
*/
DDRD = 0B00010000;
PORTD = 0B11110011;
PCMSK2 |= (( 1 << PCINT16 ) | ( 1 << PCINT17 )); //enable encoder pins interrupt sources
PCICR |= ( 1 << PCIE2 ); //enable pin change interupts
// Timers not used for the moment
// Setup timer0 - Enable overflow, 8 times prescaler
TIMSK0 = (1<<TOIE0); // Eable timer overflow for Timer0
TCNT0 = 0x00; // Set Timer0 to 0
TCCR0B = (1<< CS00) ; // /1 prescaler
TIMSK2 = (1<<TOIE2);
TCNT2 = 0x00;
TCCR2B = (1<<CS21 | 1<<CS20);
sei();
i2c_master();
lcd_init();
lcd_createChar(0x00, emblock);
char strTime[] = {'T', 'i', 'm', 'e', ':', 0x00};
lcd_setCursor(0, 1);
lcd_print(strTime);
usbDeviceDisconnect(); /* enforce re-enumeration, do this while interrupts are disabled! */
_delay_ms(500);
usbDeviceConnect();
wdt_enable(WDTO_1S);
usbInit();
//sei();
reportKeyboard.report_id = 1;
reportJoystick.report_id = 2;
cbi(PORTD, PD4);
for(;;) {
wdt_reset();
usbPoll();
/*
* This is some really bad deboucing code
*/
// Detect the button press, wait 100 timer cycles (1.7ms / cycle)
if (rbi(PINB, PB5) == 0 && switches[0][DETECTED]==0) {
switches[0][DETECTED] = 1;
switches[0][TIMER] = 100;
}
// After timer is zero, check switch again.
// If switch still pressed, its debounced
// Otherwise, reset the debounce
if (switches[0][DETECTED] == 1 && switches[0][TIMER] == 0 && switches[0][DEBOUNCED]==0) {
if (rbi(PINB, PB5) == 0)
switches[0][DEBOUNCED] = 1;
else {
switches[0][DETECTED] = 0;
switches[0][TIMER] = 0;
}
}
// If the switch has come up, do another debounce
if (rbi(PINB, PB5) && switches[0][DETECTED]==2) {
switches[0][TIMER] = 100;
switches[0][DETECTED] = 3;
}
// After the up switch timer is zero, do the debounce check
// Otherwise, assume switch is still down
if (switches[0][DETECTED] == 3 && switches[0][TIMER] == 0) {
if (rbi(PINB, PB5))
switches[0][DETECTED] = 0;
}
// Process the switch
if (switches[0][DEBOUNCED] == 1) {
xbi(keySelect, 0);
if (keySelect == 0)
sbi(PORTD, PD4);
else
cbi(PORTD, PD4);
switches[0][DETECTED] = 2;
switches[0][DEBOUNCED] = 0;
}
usbPoll();
if(usbInterruptIsReady()){
reportJoystick.data1[0] = (-128 + analogRead(0));
reportJoystick.data1[1] = (-128 + analogRead(1));
reportJoystick.data2 = 0x0000; // Clear all the buttons
reportKeyboard.modifier = 0x00;
reportKeyboard.keycode = 0x00;
uint8_t key = getKey();
if (rbi(keySelect, 0)) {
// Keypad is joystick
if (key > 0)
reportJoystick.data2 |= (1 << (--key));
} else {
// Keypad is keyboard
if (key > 0) {
//if (key==10 || key==12) // Left shift, for *, #
// reportKeyboard.modifier |= (1<<1);
reportKeyboard.keycode = keyMap[--key];
}
}
// Now work out what rotary to send, if any
// Also record if we sent a positive response,
// so we can send a '0' next time (if selected on PD4)
// rotData = [rot#][(stat|sent)]
uint8_t rot = 0;
for (rot=0; rot<=(ROTS_ATTACHED - 1); rot++) {
if (rotData[rot].stat == 0x01 && rotData[rot].sent == 0) {
rotData[rot].sent = 1;
switch (rot) {
case(0): reportJoystick.rot1a = 1; break;
case(1): reportJoystick.rot2a = 1; break;
}
} else if (rotData[rot].stat == 0x02 && rotData[rot].sent == 0) {
rotData[rot].sent = 1;
switch (rot) {
case(0): reportJoystick.rot1b = 1; break;
case(1): reportJoystick.rot2b = 1; break;
}
} else {
rotData[rot].sent = 0;
}
rotData[rot].stat = 0;
if (rbi(PINB, PB4))
rotData[rot].sent = 0;
}
/* called after every poll of the interrupt endpoint */
//usbSetInterrupt(&reportKeyboard, sizeof(reportKeyboard));
//usbSetInterrupt(&reportJoystick, sizeof(reportJoystick));
usbSendHidReport(&reportKeyboard, sizeof(reportKeyboard));
usbSendHidReport(&reportJoystick, sizeof(reportJoystick));
}
if (lcdupdate) {
usbPoll();
lcdupdate = 0;
char syschar[10];
ultoa(systime, syschar, 10);
lcd_overprint_right(syschar, 10, 5, 1);
uint8_t potVal = map_8(analogRead(0), 0, 255, 0, 100);
if (potVal != oldpotVal) {
lcd_percent_graph(potVal, 0, 0);
oldpotVal = potVal;
char pot[3];
utoa(potVal, pot, 10);
lcd_overprint_right(pot, 3, 11, 0);
// Set percentage
lcd_setCursor(15, 0);
lcd_char(0x25);
}
}
}
}
uint8_t getKey() {
uint8_t col, row = 0;
uint8_t key = 0;
uint8_t n = 1;
for (row=0; row<=3; row++) {
cbi(PORTB, row);
_delay_us(10); // Wait for the port to change
for (col=5; col<=7; col++) {
if (rbi(PIND, col) == 0)
key = n;
n++;
}
sbi(PORTB, row);
}
return key;
}
/*
*
* Process the Pin Change Interrupt.
* pcint provides what bank caused the interrupt
*
*/
void pcInterrupt(uint8_t pcint) {
switch (pcint) {
case 0: pcInt[pcint].current = PINB; break;
case 1: pcInt[pcint].current = PIND; break;
case 2: pcInt[pcint].current = PINC; break;
}
pcInt[pcint].current = PIND;
pcInt[pcint].mask = pcInt[pcint].current ^ pcInt[pcint].last;
pcInt[pcint].last = pcInt[pcint].current;
// Select what rotary we are dealing with
// based on the pc interrupt that fired.
uint8_t rot = 0;
if (pcint == 1)
rot = 1;
// If rot stat is not 0, we havn't sent
// our last results yet. Skip this click.
if (rotData[rot].stat != 0) {
pcInt[pcint].mask = 0;
return;
}
// Check which pin caused the interrupt. If they both
// equal 0, the pin that interrupted is the direction
if (rbi(pcInt[pcint].current, PCINT17) == 0
&& rbi(pcInt[pcint].current, PCINT17) == 0
&& rbi(pcInt[pcint].mask, PCINT16) ) {
rotData[rot].stat = 1;
} else if (rbi(pcInt[pcint].current, PCINT16) == 0
&& rbi(pcInt[pcint].current, PCINT17) == 0
&& rbi(pcInt[pcint].mask, PCINT17) ) {
rotData[rot].stat = 2;
}
// Clear the mask so we know we've delth with it
pcInt[pcint].mask = 0;
}
ISR(TIMER0_OVF_vect) {
// Clk/1 TCCR0B = (1<< CS00);
//20.0Mhz, 1ms = 78ovf
//16.5Mhz, 1ms = 64ovf
//12.0Mhz, 1ms = 46ovf
tmr0_ovf++;
if (tmr0_ovf>=78) {
systime++;
tmr0_ovf = 0;
}
if (switches[0][DETECTED] && switches[0][TIMER])
switches[0][TIMER]--;
}
ISR(TIMER2_OVF_vect) {
tmr2_ovf++;
if (tmr2_ovf>=78) {
lcdupdate=1;
tmr2_ovf = 0;
}
}
ISR(PCINT0_vect) {
pcInterrupt(0);
}
ISR(PCINT1_vect) {
pcInterrupt(1);
}
ISR(PCINT2_vect) {
pcInterrupt(2);
}