Rev 30 | Blame | Compare with Previous | Last modification | View Log | RSS feed
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#define F_CPU 12000000
#include <util/delay.h>
#include <avr/wdt.h>
#include <usbdrv.h>
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "hiddesc.h"
#define ROTS_ATTACHED 2
#define STAT 0
#define SENT 1
void doInt(uint8_t pcint);
uint8_t getKey(void);
uint8_t analogRead(uint8_t pin);
volatile uint8_t pcIntCurr[3] = {0,0,0};
volatile uint8_t pcIntLast[3] = {0,0,0};
volatile uint8_t pcIntMask[3] = {0,0,0};
//volatile uint8_t rot_stat[2] = {0,0};
//volatile uint8_t rot_sent[2] = {0,0};
// rotdata = [rot#][(stat|sent)]
volatile uint8_t rotdata[2][2] = { {0,0}, {0,0} };
struct{
union {
uint8_t data1[2]; // Rotaries
struct {
uint8_t rx:8;
uint8_t ry:8;
};
};
union {
uint16_t data2;
struct {
uint8_t b00:1;
uint8_t b01:1;
uint8_t b02:1;
uint8_t b03:1;
uint8_t b04:1;
uint8_t b05:1;
uint8_t b06:1;
uint8_t b07:1;
uint8_t b08:1;
uint8_t b09:1;
uint8_t b10:1;
uint8_t b11:1;
uint8_t rot2a:1;
uint8_t rot2b:1;
uint8_t rot1a:1;
uint8_t rot1b:1;
};
};
} report;
usbMsgLen_t usbFunctionSetup(uchar data[8]) {
usbRequest_t *rq = (void *)data;
if((rq->bmRequestType & USBRQ_TYPE_MASK) == USBRQ_TYPE_CLASS) {
if(rq->bRequest == USBRQ_HID_GET_REPORT) {
return sizeof(report);
} else if(rq->bRequest == USBRQ_HID_GET_IDLE) {
return 1;
}
}
return 0;
}
void hadUsbReset(void) {
}
int main(void) {
ACSR |= (1<<ACD); // Disable analog comparator
ADMUX = (1<<ADLAR) | (0<<REFS0) | (1<<REFS1);
ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0) ;
/*
DDR : 1 = Output, 0 = Input
PORT: 1 = Pullup for Input, otherwise set output
PIN : Read input pin
*/
/*
PB0 - Output - Keypad 1
PB1 - Output - Keypad 2
PB2 - Output - Keypad 3
PB3 - Output - Keypad 4
PB4 - Input, Pullup - Function select
*/
DDRB = 0B00001111;
PORTB = 0B00011111;
/*
PD0 - Input, Pullup, PCINT16 - Rotary 1a
PD1 - Input, Pullup, PCINT17 - Rotary 1b
PD4 - Input, Pullup - Keypad 5
PD5 - Input, Pullup - Keypad 6
PD6 - Input, Pullup - Keypad 7
PD7 - Input, Pullup - Keypad 8
*/
DDRD = 0B00000000;
PORTD = 0B11110011;
PCMSK2 |= (( 1 << PCINT16 ) | ( 1 << PCINT17 )); //enable encoder pins interrupt sources
PCICR |= ( 1 << PCIE2 ); //enable pin change interupts
// Timers not used for the moment
// Setup timer0 - Enable overflow, 8 times prescaler
//TIMSK0 = (1<<TOIE0); // Eable timer overflow for Timer0
//TCNT0 = 0x00; // Set Timer0 to 0
//TCCR0B = (1<< CS01) ; // /8 prescaler
usbDeviceDisconnect(); /* enforce re-enumeration, do this while interrupts are disabled! */
_delay_ms(500);
usbDeviceConnect();
wdt_enable(WDTO_1S);
usbInit();
sei();
for(;;) {
wdt_reset();
usbPoll();
if(usbInterruptIsReady()){
report.data1[0] = (-128 + analogRead(0));
report.data1[1] = (-128 + analogRead(1));
report.data2 = 0x0000;
uint8_t key = getKey();
if (key > 0)
report.data2 |= (1 << (key -1));
// Now work out what rotary to send, if any
// Also record if we sent a positive response,
// so we can send a '0' next time (if selected on PD4)
// rotdata = [rot#][(stat|sent)]
uint8_t rot = 0;
for (rot=0; rot<=(ROTS_ATTACHED - 1); rot++) {
if (rotdata[rot][STAT] == 0x01 && rotdata[rot][SENT] == 0) {
rotdata[rot][SENT] = 1;
switch (rot) {
case(0): report.rot1a = 1; break;
case(1): report.rot2a = 1; break;
}
} else if (rotdata[rot][STAT] == 0x02 && rotdata[rot][SENT] == 0) {
rotdata[rot][SENT] = 1;
switch (rot) {
case(0): report.rot1b = 1; break;
case(1): report.rot2b = 1; break;
}
} else {
rotdata[rot][SENT] = 0;
}
rotdata[rot][STAT] = 0;
if (rbi(PINB, PB4))
rotdata[rot][SENT] = 0;
}
/*
if (rot_stat[0] == 0x01 && rot_sent[0] == 0) {
report.rot1a = 1;
rot_sent[0] = 1;
} else if (rot_stat[0] == 0x02 && rot_sent[0] == 0) {
report.rot1b = 1;
rot_sent[0] = 1;
} else {
rot_sent[0] = 0;
}
// Reset our stat so ready for next turn
rot_stat[0] = 0;
// If our function select is set, dont bother
// sending a 'o' between consequtive 1's.
if (rbi(PINB, PB4))
rot_sent[0] = 0;
*/
/* called after every poll of the interrupt endpoint */
usbSetInterrupt(&report, sizeof(report));
}
}
}
uint8_t analogRead(uint8_t pin) {
ADMUX = (1<<ADLAR) | (1<<REFS0) | (0<<REFS1) | (pin & 0x0f);
ADCSRA |= (1<<ADSC); // Start converting
while (((ADCSRA >> ADSC) & 1)) {} //Wait until conversion finished
uint8_t result = ADCH;
//ADCSRA |= (0<<ADSC); // Stop converting
return result;
}
uint8_t getKey() {
uint8_t col, row = 0;
uint8_t key = 0;
uint8_t n = 1;
for (row=0; row<=3; row++) {
cbi(PORTB, row);
_delay_us(10); // Wait for the port to change
for (col=5; col<=7; col++) {
if (rbi(PIND, col) == 0)
key = n;
n++;
}
sbi(PORTB, row);
}
return key;
}
/*
*
* Process the Pin Change Interrupt.
* pcint provides what bank caused the interrupt
*
*/
void doInt(uint8_t pcint) {
// Select what rotary we are dealing with
// based on the pc interrupt that fired.
uint8_t rot = 0;
if (pcint == 1)
rot = 1;
// If rot stat is not 0, we havn't sent
// our last results yet. Skip this click.
if (rotdata[rot][STAT] != 0) {
pcIntMask[pcint] = 0;
return;
}
// Check which pin caused the interrupt. If they both
// equal 0, the pin that interrupted is the direction
if (rbi(pcIntCurr[pcint], PCINT17) == 0
&& rbi(pcIntCurr[pcint], PCINT17) == 0
&& rbi(pcIntMask[pcint], PCINT16) ) {
rotdata[rot][STAT] = 1;
} else if (rbi(pcIntCurr[pcint], PCINT16) == 0
&& rbi(pcIntCurr[pcint], PCINT17) == 0
&& rbi(pcIntMask[pcint], PCINT17) ) {
rotdata[rot][STAT] = 2;
}
// Clear the mask so we know we've delth with it
pcIntMask[pcint] = 0;
}
/* Not used for the moment
ISR(TIMER0_OVF_vect) {
timer0_ovf++;
}
*/
ISR(PCINT1_vect)
{
// Save the state and work out which pin caused
// the interrupt to occur
pcIntCurr[1] = PIND;
pcIntMask[1] = pcIntCurr[1] ^ pcIntLast[1];
pcIntLast[1] = pcIntCurr[1];
doInt(1);
}
ISR(PCINT2_vect)
{
// Save the state and work out which pin caused
// the interrupt to occur
pcIntCurr[2] = PIND;
pcIntMask[2] = pcIntCurr[2] ^ pcIntLast[2];
pcIntLast[2] = pcIntCurr[2];
doInt(2);
}